Welcome

🎁💰恭喜发财💰🎁

亚洲无码免费视频

FAQ
You are here:Home >> News >> FAQ
How is the storage capacity of a lithium battery calculated? Principle and Practical Guide for Calculating the Storage Capacity of Lithium Batteries
116 2024-08-29
Lithium batteries, as the most mainstream solution for electrical energy storage at present, are widely used in consumer electronics, electric vehicles, energy storage systems and other fields. Its core value lies in the mutual conversion of chemical energy and electrical energy through electrochemical reactions, and the precise calculation of the stored electricity (usually referring to the remaining capacity or usable electricity) is the key to ensuring the stable operation of equipment and optimizing energy management. This article will start from the working principle of lithium batteries, systematically analyze the calculation method of storage capacity, and explore the technical challenges and optimization strategies in practical applications.
I. The Physical Essence of the Storage Capacity of Lithium Batteries
The storage capacity of lithium batteries is essentially a quantitative reflection of the number of reversible intercalation/deintercalation lithium ions in the electrode materials. Take a typical lithium-ion battery as an example. During the charging and discharging process, lithium ions migrate between the positive electrode material (such as lithium cobalt oxide, lithium iron phosphate) and the negative electrode material (such as graphite), accompanied by electrons passing through the external circuit to form a current. The nominal capacity (C) of a battery is usually expressed in ampere-hours (Ah) or milliampere-hours (mAh), indicating the total amount of charge that the battery can release from a full charge to the cut-off voltage under specific discharge conditions (such as 25 ° C environment and a discharge rate of 0.2C).
Core formula
Theoretical capacity Q theory =n×F×3.61
Here, n represents the molar number of reaction electrons, F is the Faraday constant (96485 C/mol), and the unit conversion factor of 1/3.6 converts coulombs to ampere-hours.
Ii. Three Major Technical Paths for Storage Capacity Calculation
Ampere-hour integration method (Coulomb counting method)
This method calculates the change in charge quantity by real-time monitoring of the charging and discharging current and integrating.
Its advantages lie in its simple principle and low implementation cost, but there is a problem of cumulative error. For instance, factors such as accuracy deviation of current sensors and temperature drift can cause the calculated values to gradually deviate from the actual values. Regular corrections need to be made through calibration or in combination with other methods.
2. Open-circuit voltage method (OCV-SOC curve)
There is a nonlinear correspondence between the open-circuit voltage (OCV) and the state of charge (SOC) of a battery. By pre-calibrating the OCV-SOC curves under different temperatures and aging conditions, the rapid estimation of SOC can be achieved. However, this method requires the battery to be in a static equilibrium state (left to stand for several hours), and is only suitable for low dynamic scenarios. Moreover, the curve is significantly affected by battery aging.
3. Model-driven approach
Including equivalent circuit models (such as Thevenin model) and electrochemical models. The former simulates the dynamic characteristics of the battery by series resistors, capacitors and other components, while the latter constructs a system of partial differential equations based on theories such as the Porous Electrode Theory. Such methods need to be combined with algorithms such as Kalman filter and particle filter to achieve online parameter identification. Typical cases include:
Extended Kalman Filter (EKF) : Predicts SOC through the state equation, corrects the predicted value by measuring the equation, and effectively suppresses noise interference.
Adaptive algorithm: Dynamically adjust model parameters based on the degree of battery aging to enhance long-term accuracy.
Iii. Key Factors Affecting the Accuracy of Storage Capacity Calculation
1. Ambient temperature
The internal resistance of lithium batteries varies with temperature in a U-shaped curve: low temperatures cause an increase in the viscosity of the electrolyte and a decrease in the migration rate of lithium ions. High temperatures accelerate side reactions, causing irreversible capacity loss. Experiments show that the available capacity at -20℃ may drop to 60% of that at room temperature, while environments above 60℃ will accelerate the thickening of the SEI film.
2. Discharge rate
When discharging at a high rate, the polarization effect of the battery intensifies, and the terminal voltage drops sharply, resulting in a reduction in available capacity. Take 18650 cells as an example. The discharge capacity at 0.5C is about 5% to 8% lower than that at 0.2C, and the reduction at 3C discharge can reach over 20%.
3. Aging effect
Cyclic charging and discharging lead to the loss of active substances, thickening of the SEI film, and collapse of the electrode structure. For every 10% decrease in battery health status (SOH), the available capacity approximately reduces by 8% to 12%. It is necessary to establish a capacity decay model (such as the Arrhenius equation) to predict the lifespan:
Among them, k is the attenuation coefficient and α is the empirical constant.
Iv. Challenges and Solutions in Engineering Practice
1. Initial capacity calibration
New batteries need to undergo standardized charge and discharge cycles (such as 1C charge /1C discharge, three cycles) to activate the materials and determine the actual capacity. For the scenario of secondary utilization of retired power batteries, the remaining capacity needs to be evaluated through pulse charge and discharge tests.
2. Dynamic response optimization
Under transient conditions such as rapid acceleration of electric vehicles, traditional algorithms are prone to SOC estimation lag. The solutions include:
Introduce a lag model to compensate for the polarization effect
Adopt multi-time scale estimation (such as 10ms-level current sampling + 1s-level SOC update)
3. Low-temperature adaptability
Maintain the working temperature through battery heating systems (such as PTC heating films), or develop low-temperature electrolyte additives (such as fluoroethylene carbonate FEC) to improve ionic conductivity.
V. Practical Suggestions for the User End
Avoid deep discharge: Maintaining the SOC within the range of 20% to 80% can extend the cycle life
Regular balancing maintenance: Actively balance the series battery pack to eliminate voltage differences among individual cells
Data-driven management: Train SOC estimation models using historical data recorded by BMS
日韩高清视频人妻综合福利网_国产成人精品午夜免费视频在线视频_亚洲成🐬人福利精品影院综合网_日韩人妻无码免费视频福利在线视频_午夜精品成人综合视频一区_欧美成人午夜福利视频在线观看_午夜福利高清人妻在线视频综合网_国产亚洲精品午夜免费视频福利_成人人妻精品在线视频网_亚洲午夜福利高清视频综合_成人精品高清视频综合网 日本高清免费xxx_少妇| 国产精品人妻一区二区三区A| 日本午夜精品一区二区三区电影| 人妻少妇精品视频一区二区三区| 亚洲精品中文字幕无码专区| 亚洲丁香婷婷久久一区二区| 亚洲AV永久无码精品网址| 国产真实乱人偷精品人妻| 无码人妻久久一区二区三区蜜桃| 午夜精品一区二区免费人妻人人干视频| 国产精品aⅴ久久久久久鸭绿欲| 亚洲国产精品日韩在线观看| 中文字幕乱偷无码动漫av_| AV无码AV天天AV天天爽| 少妇厨房愉情理伦片bd在线观看| 国产在线精品一区在线观看| 国产精品无码国模私拍视频| 水蜜桃国产在线观看免费视频| 99久久无码免费国产| 国产精品99无码一区二蜜桃| 丁香婷婷综合激情五月色| 色欲AV无码国产麻豆美| 亚洲人成网站999久久久综合| 日韩乱码人妻无码中文视频| 免费久久人人爽人人爽人人全集在线| AV无码AV天天AV天天爽| 午夜亚洲福利视频| 精品午夜福利1000在线观看| 久久精品国产亚洲AV无码麻豆| 亚洲精品乱码久久久久久日本| 有码无码中文字幕自慰系列| 日韩高清大片永久免费入口| 中文字幕色偷偷人妻久久| 五月婷婷综合国产成人一区二区三区| 国产成人高清视频免费播放| 性欧美丰满熟妇XXXX性久久久| 欧美丰满熟妇xxxx性ppx人交| 亚洲欧美精品水蜜桃| 白嫩外女BBWBBWBBW| 少妇人妻精品毛片一区二区| 一本色道无码道DVD在线观看| 中文字幕人妻无码系列第三区| 亚洲欧洲∨国产一区二区三区| 97国产超薄黑色肉色丝袜,精品国产96亚洲一区二区三区| 国产农村熟妇出轨videos| 亚洲乱码国产乱码精品视频| 中文字幕乱妇无码av在线| 国产亚洲日韩一区二区三区| 国产午夜精品一区二区三区| 午夜福利精品短视频在线| 国产一级久久久久毛片精品| 女教师免费观看全集电视剧| 久久精品国自产拍,婷婷无套内射影院| 永久免费不卡在线观看黄网站| 国产在线乱子伦一区二区| 久中文字幕中文字幕亚洲无线| 亚洲精品乱码久久久久久日本| 亚洲Vv无码专区日韩乱码不卡| 亚洲一级毛片日韩高清| 欧美日韩高清视频在线观看| 强伦人妻一区二区三区视频| 国产欧美精品一区二区色综合| 337P日本欧洲亚洲大胆精品| 服从调教的人妻在线观看| 亚洲成a人片在线观看无码专区| 人妻少妇久久久久久97人妻| 亚洲国产精品中文乱码AV| 91精品丝袜国产高跟在线一区| 亚洲A∨无码精品午夜电影| 朋友夫妇交换2未删减版| 国产成人一区二区三区影院| 人妻被修空调在夫面侵犯| 国产suv精品一区| 亚洲av无码精品色午夜在线观看| 日韩中文字幕在线观看| 中文字幕在线日韩| 亚洲番号无码剧情番号| 亚州AV无码在线观看| 人妻丰满熟妇av无码专区| 九一无码中文字幕久久无码色| 国产人妻丰满熟妇在线视频| JΑPΑNESEHD熟女熟妇伦| 免费伦理片在线观看| 狠狠躁夜夜躁人人爽天天古典| 蜜臀av夜夜澡人人爽人人| 日本老司机午夜福利在线免费观看| 丰满人妻在公车被猛烈进入电影| 中文字幕久久人妻无码人妻| 精品人妻系列无码一区二区三区| 午夜精品影视国产一区在线麻豆| 久久无码人妻精品一区二区三区| 亚州AV综合色区无码一区| 日产无码久久久久久精品| 欧美精品久久99人妻无码| 国产尤物av尤物在线观看| 日本熟妇无码亚洲成a人片动漫| 强伦女教师2HD在线观看| 永久中文字募精品人妻丰满熟妇免费视频| 国内精品久久久久伊人av| 国产六月婷婷爱在线观看| 国产激情久久久久久熟女| 国内少妇高潮嗷嗷叫在线播放| 乱中年女人伦AV一区二区| 久久天天躁狠狠躁夜夜躁综合| 99久久人妻无码精品系列蜜桃| 91精品国产综合久久久久久久| 国产人妻人伦精品| 国产福利一区二区精品视频| 国产人妻精品区一区二区三区| 国产精品成年片在线观看| 爽爽精品DVD蜜桃成熟时电影院| 亚洲äV无码精品久久久久成精品| 亚洲日韩免费视频观看| 偷国产乱人伦偷精品视频| 丰满的继牳2理伦片| 丰满的继牳2理伦片| 中文字募永久精品免费视频人妻丰满熟妇| 婷婷五月综合人人网| 欧美日韩精品午夜久久国产| 午夜婷婷国产麻豆精品| 亚洲东京热一区二区日韩| 91精选日韩综合永久入口| 亚洲AV男人的天堂在线观看| 精品人妻中文字幕有码在线| 国产成a人亚洲精v品无码性色| 亚洲中文字幕在线观看| 产成人精品午夜视频免费| 亚洲大片精品永久免费看网站| 午夜人性色福利无码视频在线观看| 欧美熟妇一区二区三区蜜97夜夜澡人人爽| 无码人妻一区二区三区四区ava| 麻豆国产精品永久免费视频| 精品欧美熟妇视频在线观看| 人妻无码专区一区二区三区| 91国内精品野花午夜精品| 久久精品国产一区二区三区四区| 无套内谢少妇毛片A片樱花| 午夜精品久久久久久视频入口| 人妻无码专区在线视频观看| 午夜精品影视国产一区在线麻豆| 精品人妻中文字幕有码在线| 人妻公妇の浮中字视频| www国产亚洲精品久久久日本| 国产熟女精品视频大全| 国产人妻换人妻互换A片爽文视频| 日韩成人人妻熟妇乱子伦hd| 国产精品无码mv在线观看| 欧美在线观看成人高清视频| 天天爽夜夜爽人人爽| 无码人妻久久一区二区三区蜜桃| 色熟妇人妻久久中文字幕| 97国产精东麻豆人妻电影观看| 日本肉感爆乳一区二区本草久| 国产小视频无码人妻HD| 亚洲AV色欲无码人妻中文字幕| 欧美极品少妇无套实战| 日韩内射美女片在线观看网| 国产人妻精品无码视频在线| 日韩高清视频人妻综合网| 国产福利精品人妻在线视频| 人妻精品在线视频福利网| 日韩精品人妻福利在线视频| 日韩精品无码人妻综合在线视频| 日韩人妻无码免费在线视频| 日韩丰满人妻无码区| 国产人妻精品无码| 日韩午夜免费视频| 欧美成人福利网| 国产午夜福利人妻| 亚洲无码免费视频| 午夜福利人妻影院| 成人精品视频在线观看| 日韩高清午夜无码| 亚洲成人福利区| 国产亚洲精品视频网| 日韩丰满人妻无码区| 日韩人妻精品一区| 美乳丰满人妻无码视频| 国产人妻精品无码| 日韩午夜免费视频| 欧美成人福利网| 国产午夜福利人妻| 亚洲无码免费视频| 午夜福利人妻影院| 成人精品视频在线观看| 日韩高清午夜无码| 亚洲成人福利区| 国产亚洲精品视频网| 日韩丰满人妻无码区| 日韩人妻精品一区| 美乳丰满人妻无码视频| 国产人妻精品无码| 日韩午夜免费视频| 欧美成人福利网| 国产午夜福利人妻| 亚洲无码免费视频| 午夜福利人妻影院| 日韩丰满人妻无码区| 成人精品视频在线观看| 日韩高清午夜无码| 亚洲成人福利区| 国产亚洲精品视频网| 日韩人妻精品一区| 美乳丰满人妻无码视频| 国产人妻精品无码| 日韩午夜免费视频| 欧美成人福利网| 国产午夜福利人妻| 亚洲无码免费视频| 午夜福利人妻影院| 成人精品视频在线观看| 日韩高清午夜无码| 日韩丰满人妻无码区| 日韩人妻精品一区| 美乳丰满人妻无码视频|